Properties of Ionic and Covalent Compounds

Remember...properties of metals are a result of the characteristics of metallic bonds.

What are the properties of covalent compounds?

Properties of Covalent Compounds

- Can be any state of matter (solid, liquid, gas)
- Lower melting points
- Don't conduct electricity
- Low solubility (some)

What are the properties of ionic compounds?

Properties of Ionic Compounds

- Crystalline solids-crystal lattice
- · Solids at room temperature
- High melting point
- Hard, brittle
- Conducts electricity when in liquid state or when dissolved in water
- High solubility

Ionic compounds conduct electricity

- For a material to conduct an electric current, there must be charged particles that can move.
- Ionic compounds in a liquid state or dissolved in water can conduct electricity
 - > Ions are free to move
- An aqueous solution of an ionic compound that conducts electricity is called an **electrolyte**.

Ionic bonds are very strong

- Ionic bonds are very strong so lots of energy is needed to break them apart.
- Therefore, ionic compounds have very high melting points and boiling points.

Compound	Melting Point (°C)	Boiling Point (°C)
Nal	660	1304
KBr	734	1435
NaBr	747	1390
CaCl ₂	782	>1600
NaCl	801	1413
MgO	2852	3600

http://highered.mcgraw-hill.com/sites/007874637x/student_view0/chapter7/section2/self_check_quizzes.html

Crystal Lattice

- Ionic Compounds form crystals.
- Positive and negative ions are packed into a regular, repeating pattern that balances the attraction and repulsion between ions.
 - Positive and negative ions are attracted to each other, repelled by same charge
- This results in a crystal lattice: a 3-dimensional geometric arrangement of particles.
 - > Each positive ion is surrounded by negative ions
 - > Each negative ion is surrounded by positive ions

When an external force is applied to a crystal (you hit it with a hammer), it causes the crystal to crack

- The force repositions the like-charged particles next to each other
- Repulsive force cracks crystal

Energy of ionic bonds

- Lattice energy: energy needed to break apart one mole of an ionic compound.
 - The greater lattice energy is, the stronger the force of attraction
- Lattice energy is greater for small ions, and greater charges (remember Coulomb's law?)

Remember periodic trends: ionic radius.

- Cations are always smaller than their neutral atom
- Anions are always bigger than their neutral atom
- Moving down a group: ionic radii increases
- Moving across a period: ionic radii of cations decreases, ionic radii of anions decreases

Example 1: Which of the following has a greater lattice energy?

NaCl or LiCl? Why?

KF or KCl? Why?

MgCl₂ or NaCl? Why?

Compound	Lattice Energy (kJ/mol)	Compound	Lattice Energy (kJ/mol)
LiF	1030	MgCl ₂	2326
LiCl	834	SrCl ₂	2127
LiI	730		
NaF	910	MgO	3795
NaCl	788	CaO	3414
NaBr	732	SrO	3217
NaI	682		
KF	808	ScN	7547
KCl	701		
KBr	671		
CsCl	657	10 miles - 10 miles	
CsI	600		

Example 2

Which compound has greater lattice energy? Why?

KI or KBr?

SrCl₂ or AgCl?

Order the following compounds from lowest to highest melting point.

• KI, KCl, KBr, KF