Why do scientists use Charts and Graphs?

- visual representation of their results
- influence the public
 - a. visually driven society
 - b. when looking at a graph of experimental results, always ask yourself if the researchers have an ulterior motive

An Overview

Before conducting a meaningful investigation, it's important to organize the data you collected.

- By organizing data, a scientist can more easily interpret what has been observed.
- Making sense of data is called interpretation.

Data Tables and charts

Since most of the data scientist collect is quantitative, data tables and charts are usually used to organize the information

- Graphs are created from data tables
- They allow the investigator to get a visual image of the observations, which simplifies interpretation and drawing conclusions
- Valid conclusions depend on organization and clear interpretation of data.

Data Tables

When creating data tables, place the manipulated variable in the left column and the responding variable in the right column.

• Create a table with the following information

week number	weight lifted		
1	150 pounds		
2	172 maxim da		
3	172 pounds		
4	183 pounds		

Material	PERCENTAGE OF SOLID WASTE		
Paper	38.1		
Yard Waste	12.1		
FOOD WASTE	10.9		
PLASTICS	10.5		
Metals	7.8		
RUBBER, LEATHER, TEXTILES	6.6		
GLASS	5.5		
WOOD	5.3		
OTHER	3.2		

How to make a line graph

- 1. Label the x axis (horizontal axis) with the independent variable.
- 2. Label the y-axis (vertical axis) with the dependent variable.
- 3. Determine the range of your data that must fit on each axis. The range will set the scale.
- 4. Number each axis division (line). Each division should be equally spaced.
- 5. Plot each data pair accurately as a point on the graph.
- 6. Choose a title that describes the graph.

Distance from the sun	Surface Temperature
(AU)	(°C)
0.39	327
0.72	482
1.0	14
1.5	-23
5.2	-151
9.6	-184
19.2	-207
30.1	-223

How to determine slope.

Slope is the ratio of the change in the y-value to the change in the x-value. It is sometimes called the rise over the run.

- 1. Choose two points (A and B) on the line graph.
- 2. Find the change in the y value (Y_B-Y_A) .
- 3. Find the change in the x value. (X_B-X_A) .
- 4. Divide the change in x by the change in y.

Interpreting data

The final step of the investigation is to draw conclusions and interpret the data.

- A conclusion is a factual summary of data. Usually more than one conclusion statement is required to summarize a data set.
- An interpretation is a generalization that explains or interprets the data set.

Below is data from an investigation that measured the absorbancy of three types of paper towels.

Towel Type	towel size	trial 1	trial 2	trial 3	trail 4	Average
A	225 cm ²	25	28	24	31	27
в	225 cm²	26	27	23	22	24.5
С		18	20	23	21	20.5

conclusion: Towel A absorbed an average of 27 mL of water. Towel B absorbed an average of 24.5 mL of water while towel C absorbed an average of 20.5 mL of water

inference: Towel A is the most absorbent and towel C the least absorbent.

For homework 1.6 graphing data

Make a data table

Make a chart/graph

Use color in your charts and graphs

SULTAN