Question 1

For the function f defined by the power series

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x)^{2n}}{n!} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \frac{x^{10}}{5!} + \ldots$$

for all real numbers x:

(a) Find $f''(0)$ and $f'''(0)$. Determine whether f has a local maximum, local minimum, or neither at $x = 0$. Give a reason for your answer.

(b) Explain why $\frac{1}{2!} - \frac{1}{3!}$ approximates $f(1)$ with error less than $\frac{1}{10}$.

(c) Show that $y = f(x)$ is a solution to the differential equation $y' + 2xy = 0$.

(a)

$$f'(x) = -2x + \frac{4x^3}{2!} - \frac{6x^5}{3!} + \ldots$$

$$f''(0) = 0$$

$$f''(x) = -2 + \frac{12x^2}{2!} - \frac{30x^4}{3!} + \ldots$$

$$f'''(0) = -2$$

There is a local maximum at $x = 0$ ($f' = 0$ and $f'' < 0$).

(b) $f(1) = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \ldots$

This is a decreasing alternating series with $a_n \to 0$, as $n \to \infty$; therefore

$$\left| f(1) - \left(1 - 1 + \frac{1}{2!} - \frac{1}{3!}\right)\right| \leq \frac{1}{4!} = \frac{1}{24} < \frac{1}{10}$$

(c) $\{1: f''(0)\}$$

1: states local maximum

1: justification

$\{1: f'''(0)\}$

1: error less than 1/10

1: cites alternating series error bound
Question 1 (cont.)

(c)

\[y' = f'(x) = \frac{d}{dx} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{m!} \]

\[= \frac{d}{dx} \left[1 + \sum_{m=1}^{\infty} \frac{(-1)^m x^{2m}}{m!} \right] \]

\[= 0 + \sum_{m=1}^{\infty} \frac{(-1)^m}{m!} \frac{d}{dx} \left(x^{2m} \right) \]

\[= \sum_{m=1}^{\infty} \frac{(-1)^m}{m!} (2m) x^{2m-1} \]

\[y' = 2 \sum_{m=1}^{\infty} \frac{(-1)^m}{(m-1)!} x^{2m-1} \]

\[2xy = 2xf(x) = 2x \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} \]

\[= 2 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!} \]

Letting \(n = m - 1 \):

\[2xy = 2 \sum_{m=1}^{\infty} \frac{(-1)^{m-1} x^{2m-1}}{(m-1)!} \]

\[= -2 \sum_{m=1}^{\infty} \frac{(-1)^m x^{2m-1}}{(m-1)!} \]

Therefore,

\[y' + 2xy = 2 \sum_{m=1}^{\infty} \frac{(-1)^m}{(m-1)!} x^{2m-1} - 2 \sum_{m=1}^{\infty} \frac{(-1)^m}{(m-1)!} x^{2m-1} \]

\[= 0 \]
The function f is defined by the power series

$$f(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \ldots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^n}{n}$$

for all real numbers x for which the series converges.

(a) Determine the interval of convergence for f. Justify your answer.

(b) Given $g(x) = f'(x)$, find the first three terms and the general term of $g(x)$.

(c) Find a rational function which is identical to g over its interval of convergence.

(d) Let h be the function defined by $h(x) = f(x^3 + 1)$. Find a rational function that is identical to $h'(x)$.

(a) Using the ratio test:

$$\lim_{n \to \infty} \left| \frac{(-1)^n (x-1)^{n+1}}{n+1} \right| = \frac{n}{n+1} \left| (-1)^n (x-1)^n \right|$$

$$= \lim_{n \to \infty} \left| \frac{n}{n+1} \right| \cdot \lim_{n \to \infty} |x-1|$$

$$= |x-1| < 1, \quad 0 < x < 2$$

For $x = 2$, $f(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$. By the alternating series test, the series converges. For $x = 0$,

$$f(0) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(-1)^n}{n} = -\sum_{n=1}^{\infty} \frac{1}{n}.$$ By the p-series test, the series diverges. The interval of convergence is $(0, 2]$.

(b)

$$g(x) = 1 - (x-1) + (x-1)^2 - \ldots + (-1)^n (x-1)^n + \ldots$$

$(n$ starts at zero)
<table>
<thead>
<tr>
<th>Question 2 (cont.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>$g(x) = \sum_{n=0}^{\infty} (-1)^n (x-1)^n = \sum_{n=0}^{\infty} (1-x)^n$ is a geometric series with $r = 1-x$. The series converges for $</td>
<td>r</td>
</tr>
<tr>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>$h'(x) = 3x^2 f'(x^3 + 1) = 3x^2 g(x^3 + 1) = \frac{3x^2}{x^3 + 1}$, $x \in (-\sqrt{2},0)$</td>
<td>2: $1: 3x^2 f'(x^3 + 1)$</td>
</tr>
</tbody>
</table>
Question 3

Given $f(x) = \cos(x^2)$:

(a) Find the first four terms and the general term of the Maclaurin series for $f(x)$.

(b) Find the radius of convergence for this series.

(c) Use the first three terms of the Maclaurin series for $f(x)$ to approximate $\cos(1)$. Show that the approximation is accurate to within $\frac{1}{500}$.

(a) Since $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$,

$$
\cos(x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{(x^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{(2n)!}
$$

$$
= 1 - \frac{x^4}{2!} + \frac{x^8}{4!} - \frac{x^{12}}{6!} + \cdots + (-1)^n \frac{x^{4n}}{(2n)!} + \cdots
$$

(b) $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{4(n+1)}}{(2(n+1))!} \cdot \frac{(2n)!}{x^{4n}(2n)!} \right| = \frac{x^4}{2n+2(2n+1)}$

Now, $\lim_{n \to \infty} \frac{x^4}{2n+2(2n+1)} = 0 < 1$. Therefore, by Ratio Test, this series converges for all x. The radius of convergence is $R = \infty$.

(c) $\cos(1) = \cos(1^2) = f(1) \approx 1 - \frac{1}{2!} + \frac{1}{4!} = \frac{1}{2} + \frac{1}{24} = \frac{13}{24}$

The series is an alternating, decreasing series with terms that approach 0 — therefore, the remainder is less than or equal to the next term, $1/6! = 1/720 < 1/500$.

\[1: \text{substitutes } x^2 \]
\[3: \{ 1: \text{first four terms} \}
\[1: \text{general term} \]

\[2: \text{Ratio Test} \]
\[1: \text{evaluates limit} \]
\[1: \text{correct radius of convergence} \]

\[2: \{ 1: \text{approximation} \}
\[1: \text{error less than } 1/500 \]
Question 4

<table>
<thead>
<tr>
<th>x</th>
<th>$g(x)$</th>
<th>$g'(x)$</th>
<th>$g''(x)$</th>
<th>$g'''(x)$</th>
<th>$g^{(4)}(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>17</td>
<td>22</td>
<td>20</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>$\frac{160}{3}$</td>
<td>$\frac{141}{4}$</td>
<td>21</td>
<td>$\frac{151}{8}$</td>
</tr>
<tr>
<td>4</td>
<td>232</td>
<td>$\frac{604}{3}$</td>
<td>$\frac{2703}{16}$</td>
<td>152</td>
<td>$\frac{1123}{8}$</td>
</tr>
</tbody>
</table>

Let $g(x)$ be a function having derivatives of all orders for all x. Selected values of g and its first four derivatives are listed in the table above. The function g and its first four derivatives are increasing on the interval $2 \leq x \leq 4$.

(a) Write the first-degree Taylor polynomial for g about $x = 3$ and use it to approximate $g(3.1)$. Is this approximation greater than or less than $g(3.1)$? Explain.

(b) Write the third-degree Taylor polynomial $P_3(x)$ for g about $x = 3$ and use it to approximate $g(3.1)$.

(c) Show that $|g(3.1) - P_3(3.1)| < 6 \times 10^{-4}$.

(a)

$$P_1 = g(3) + g'(3)(x - 3)$$

$$= 50 + \frac{160}{3}(x - 3)$$

$P_1(3.1) = 50 + 16/3 \approx 55.333$

This is an under-approximation because $g''(x)$ is $+$ on the interval. Since $g(x)$ is concave up, it must sit above the linearization.
Question 4 (cont.)

(b)\[
P_3 = g(3) + g'(3)(x - 3) + \frac{g''(3)}{2!}(x - 3)^2 + \frac{g'''(3)}{3!}(x - 3)^3
\]
\[
= 50 + \frac{160}{3}(x - 3) + \frac{141}{8}(x - 3)^2 + \frac{7}{2}(x - 3)^3
\]
\[
P_3(3.1) = 50 + \frac{160}{3}(0.1) + \frac{141}{8}(0.1)^2 + \frac{7}{2}(0.1)^3 \approx 55.513
\]

(c) Since \(g^{(4)}(x)\) is increasing on the interval [2, 4], its maximum value on [3, 3.1] must be less than \(g^{(4)}(4) = \frac{1123}{8}\). Thus, using the Lagrange error bound,
\[
|g(3.1) - P_3(3.1)| < \left(\frac{1123}{8}\right) \left(\frac{3.1 - 3}{4!}\right) \approx 5.849 \times 10^{-4} < 6 \times 10^{-4}
\]
Question 5

Let \(f \) be the function given by \(f(x) = xe^{-x} \).

(a) Write the first four nonzero terms and the general term of the Taylor series for \(f \) about \(x = 0 \).

(b) Find \(\lim_{x \to 0} \left(\frac{f(x) - x + x^2}{x^3} \right) \).

(c) Write the first four non-zero terms and the general term of the Taylor series for \(g(x) = \int_0^x te^{-t} dt \) about \(x = 0 \). Use the first three terms to approximate \(g(1/5) \).

(d) Evaluated at \(x = 1/5 \), the Taylor series for \(g \) is an alternating decreasing series with individual terms that decrease in absolute value to zero. Show that your approximation in (c) must differ from \(g(1/5) \) by less than 1/90,000.
<table>
<thead>
<tr>
<th>Question 5 (cont.)</th>
<th>1: analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) Error bound is established by next term:</td>
<td></td>
</tr>
</tbody>
</table>
| \[
\text{Error} < \left| \frac{(1/5)^2}{5 \cdot 3!} \right| = \frac{1}{93,750} < \frac{1}{90,000}
\] | 1: analysis |