CHAPTER

MATERIALS

Background

Negative and positive feedback loops control many physiological functions. In a negative feedback loop, physiological mechanisms work to counteract changes that move internal conditions above or below set values.

ADDITIONAL INVESTIGATION

In contrast, in a postive feedback loop, physiological mechanisms work to increase change away from set values until a particular result is achieved, and homeostasis is restored.

Whether or not a process is controlled by negative or positive feedback loops can often be determined by examining graphs of relevant data. In this exercise, you will make graphs using various sets of data. You can then use the graphs to determine whether a positive or negative feedback loop is at work.

Negative and Positive Feedback

Problem

Does the graph show a negative or positive feedback loop?

Procedure

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

First, you will graph a function controlled by negative feedback, in this case the release of an animal hormone. Make a line graph of the data below. In this example, the presence of hormone A can cause the release of hormone B into the blood. The rise in hormone B levels then will decrease the amount of hormone A. This is a negative feedback loop. Time should be on the *x*-axis. Label both axes and give your graph a title.

TABLE 1. HORMONE A LEVELS IN THE BLOOD									
formone A Concentration (ng/mL)	Time (min)								
. 1	0								
1	15								
2	30								
4	45								
6	60								
. 3	75								
2	90								
.1	105								
1	120								
2	135								
5	150								
2	175								
1	190								

CHAPTER 28 Human Systems and Homeostasis

- **2** Look at your graph. Notice there is a pattern of how the hormone level rises and falls. This is characteristic of negative feedback.
- Make a new line graph of the data in Table 2 that shows a positive feedback system. When you get a cut or scrape, clotting factors in the blood are activated so that they can seal the wound. The activation of some clotting factors increases the amount of other clotting factors. Plot time on the *x*-axis and label both axes. Title your graph.

TABLE 2. BLOOD LEVELS OF CLOTTING	FACTOR X FOLLOWING A WOUND
Factor X'Concentration (µg/ml)	Time After Cut (min)
0.1	0.0
0.2	0.5
0.3	1.0
0.9	2.0
1.2	3.0
1.8	4.0
1.9	5.0

- 4 Compare this graph to the negative feedback graph.
- 6 Construct 2 new graphs from Tables 3 and 4. Use them to determine whether the situations described below are controlled by negative or positive feedback loops.
- Graph 3: After a meal, the concentration of glucose in a person's blood will start to change from its baseline value, as shown in Table 3. Make another line graph using this data. Plot time on the *x*-axis. Label the axes and give your graph an appropriate title.

TABLE 3. GLUCOSE LEVELS IN THE BLOOD AFTER EATING									
Blood Glucose Concentration (ng/ml)	Time After Eating (minutes)								
80,	0								
130	15								
175	30								
162	45								
150	60								
145	75								
140	90								
119	120								
100	150								
80	180								

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

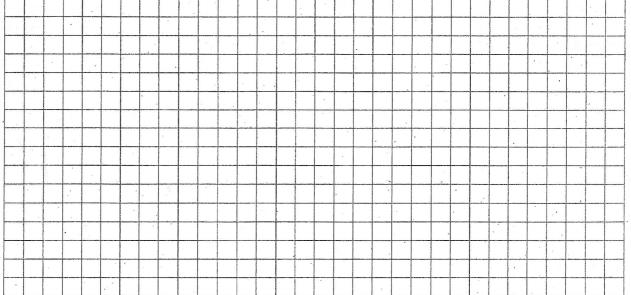
Graph 4: In females, the levels of the hormone estrogen in the blood peak just prior to ovulation, the release of an egg from the ovary. A rise in estrogen causes the release of a hormone from the brain (luteinizing hormone), which leads to additional increases in estrogen levels. Make another line graph using the data in Table 4. Again, the x-axis should be time; label the axes and give your graph a title.

TABLE 4. BLOOD ESTROGEN LEVE	LS IN THE DAYS BEFORE OVULATION
Estrogen Concentration (pg/ml)	Time (days)
50	0
70	1
90	2
120	3
150	4
180	5
190	6

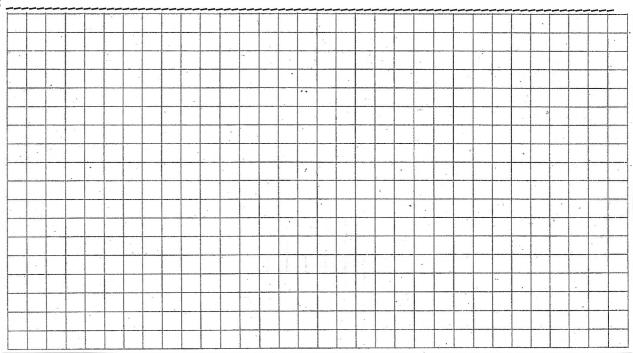
Ompare your graphs made using Table 3 and Table 4 data. Decide whether positive or negative feedback loops control blood glucose levels. Then decide which type of feedback controls estrogen concentration. Label each graph as positive or negative feedback.

CHAPTER 28 Human Systems and Homeostasis

Analyze and Conclude


1. Compare and Contrast How are the graphs of a body chemical controlled by negative feedback and a chemical controlled by positive feedback similar? How are they different?

- **2. Analyze** Which is controlled by a negative feedback loop: blood glucose levels after eating or estrogen levels in the days prior to ovulation? Which is controlled by a positive feedback loop?
- **3. Infer** It's around lunchtime and you are feeling hungry, so you eat a sandwich. When the food passes through your stomach and into your small intestine during digestion, your brain receives a signal causing you to feel full. Consequently, you do not eat any more food. Is this an example of negative or positive feedback? Explain.
- **4. Infer** Mitochondria, the organelles involved in cellular respiration, can also generate chemicals called reactive oxygen species (ROSs). ROSs can damage mitochondria. Damaged mitochondria generate more ROSs than healthy mitochondria. Is this an example of negative or positive feedback?
- **5. Conclude** How is negative feedback related to homeostasis?


Name:								Date:														Period:										
									N	leg	ati	ve	& P	osi'	tiv	e F	eed	ba	ck													
Background Qu 1. In a negative that move i	ve	fee	edb	acl	k lo ndi	op tio	, pl ns	nys abo	iol ove	ogi e or	ical be	melov	ech w s	iani et v	ism valu	ıs v	vor	'k t	0 _	4									_ch	ıan	ge:	s
2. In a positiv away from	e f	ee t v	dba alu	ack es	lo unt	op, til a	ph a pa	ysi arti	iolo icu	ogi lar	cal res	me sul	echa t is	ani ach	sm ie	s w	orl l.	k to	o _							change						
Graphs – Be sur	e t	0 <u>T</u>	ITLE	ea	ch g	ırap	h w	/ith	the	: Ta	ble's	s TI	TLE	(Ex.	Gra	aph	1 =	Hoi	mo	ne I	4 Le	vels	in	the	Blo	od)	and	l lat	oel a	xes	Į.	
Graph 1 Title:		سے میں د	, حسي حسي 4		, النبي النبي ال	بر دسر دسر در دسر دسر		عبد الحميد الحميد		ب احدی احدی ا	اسے اسے اس		میں میں میں میں میں میں اس				د اسبی دانسی انت															
			-							-										-			4									
-			1		<u></u>				-	-	-			1							71			1		ande.					1	_
-										ļ_				_	-	a alaa	- 1-	+	- 10-								-				-	-
-			-			-	ļ	-		11.00			-	-															<u> </u>			-
-				-		-	-			ļ		-	ļ.,																			-
-						1	-	-			-	-		-	- 1														-	-		-
												-	-				1						1		. ,			-			-	-
-						1	ŀ				-		-	-																		
				-					-		-	-	-	-	-	-	1				-						-		-			-
					-						-	-	-	-											-						-	-
							-			-	-	-	-	-									4									-
-							-			-	-	-	-	-														-				-
-					-		-				-		-	-		1															-	-
					/			-				-	-	-		-						react year						-				-
-			-		-		-	-			-					-											-				_	-
-	-						-				-		-		-												-	-				-
			<u> </u>				-		-	-	-			-																-		+
			L	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u></u>		<u></u>		<u></u>			<u></u>								L		<u></u>		<u></u>				
Graph 2 Title: _																						:					(
		100-1		TT		-																				4						<u> </u>
													in a grant					120.											-		-	1
		- 1	4 1			-					- 4				- 1	if		a to region	· ·	1		e de							1			1
1	1										- 1				15			*1		1							1					-
1	\dashv														1										- 1							1
-												-	 ,			<u> </u>					- ;								1			

-

Analysis & Conclusion - On a separate sheet of paper, answer the following questions IN COMPLETE SENTENCES!

- 1. How are the graphs of a body chemical (Hormone A, Factor X, Glucose, Estrogen) controlled by negative feedback and a chemical controlled by positive feedback similar? How are they different?
- 2. Which is controlled by a negative feedback loop: blood glucose levels after eating <u>OR</u> estrogen levels in the days prior to ovulation? Which is controlled by a positive feedback loop?
- 3. It's around lunchtime and you are feeling hungry, so you eat a sandwich. When the food passes through your stomach and into you small intestine during digestion, your brain receives a signal causing you to feel full. Consequently, you do not eat any more food. Is this an example of negative or positive feedback? Why?
- 4. Mitochondria, the organelles involved in cellular respiration, can also generate chemicals called reactive oxygen species (ROSs). ROSs can damage mitochondria. Damaged mitochondria generate more ROSs then healthy mitochondria. Is this an example of negative or positive feedback? Why?
- 5. How is negative feedback related to homeostasis?