Bone Function and Structure

BONE FUNCTION & STRUCTURE

- very active tissue
- contains bone tissue, cartilage, dense connective tissue, blood, and nervous tissue
- classified based on location and shape
 - location: axial and appendicular
 - shape (p. 175): long (limb bones), short (wrist, ankle, patella), flat (sternum, scapula, ribs, most skull bones), and irregular (hip, vertebrae)

INTRODUCTION TO BONES

SKELETAL CARTILAGES

- function: provide flexibility to skeleton
- made mostly of water making it very resilient
- surrounded by perichondrium (dense connective tissue) that acts as a girdle and supplies nutrients to chondrocytes
- 3 types: hyaline, elastic, fibrocartilage

SKELETAL CARTILAGE

- hyaline - support with flexibility and resilience
- articular cartilage - covering ends of bones that form joints
- costal cartilage - connects ribs to sternum
- respiratory cartilage - larynx
- nasal cartilage - supports external nose
- elastic - able to withstand repeated bending
- external ear and epiglottis
- fibrocartilage - highly compressible and great tensile strength
- discs between vertebrae and knee menisci

SUPPORT & PROTECT

- give shape (framework)
 - head, face, thorax, limbs
- support body weight
 - lower limbs, pelvis, and backbone
- protects organs
 - skull - eyes, ears, brain
 - rib cage and shoulder girdle - heart and lungs
 - pelvic girdle - lower abs and internal reproductive organs

BODY MOVEMENT

- work with muscles
- levers
 - rigid rod or bar
 - fulcrum or pivot
 - object
 - energy source
- bending and extending upper arm bones of the forearm (rod)
- elbow (fulcrum)
- hand (object)
- muscles (energy source)
- biceps brachii - bends
- triceps brachii - extends
Bone Function and Structure

Blood Cell Formation
- a.k.a. hematopoeisis
- red marrow forms RBC, WBC, platelets found in the spongy bones of the skull, ribs, sternum, clavicles, vertebrae and hip bones
- yellow marrow stores fat found mostly in cavities of long bones can become red marrow if the body needs more blood

Storage of Inorganic Salts
- vital metabolic processes require calcium muscle contraction, nerve impulse conduction, blood clotting
- extracellular matrix of bone stores calcium salts mostly calcium carbonate magnesium (Mg), sodium (Na), potassium (K) and carbonate ions
- negative feedback low blood calcium, osteoclasts break bone down osteoclast = bone destroying cell high blood calcium, osteoblasts form new bone osteoblast = bone building cell

Bone Markings
- a bone’s shape makes possible its functions
- processes (projections) provide sites where ligaments and tendons attach
- grooves and openings form passageways for blood vessels and nerves
- depressions of one bone may articulate with a process of another

5 Parts of a Long Bone
- epiphysis - ends of a bone articulate (form joints) with other bones proximal epiphysis - end nearest body distal epiphysis - end farthest from body outside - compact bone inside - spongy bone covered in articular (hyaline) cartilage
- diaphysis - long axis of a bone thick collar of compact bone

Compact vs. Spongy Bone
- both are strong and resist bending
- compact bone - walls of diaphysis NO spaces osteons
- spongy bone - epiphyses a.k.a. cancellous bone trabeculae - honeycomb of small needle-like or flat projections along lines of stress spaces between the plates reduce the bones weight spaces filled with red or yellow bone marrow
Bone Function and Structure

Microscopic Structure

- 4 bone cells
 - osteogenic - bone stem cell
 - osteocytes - bone cell
 - osteoblast - bone-forming cells
 - osteoclast - bone destroying cells

- compact bone
 - osteon (Haversian system) - tiny weight-bearing pillars
 - group of hollow tubes arranged like tree rings
 - lamellae help resist twisting
 - osteocytes in lacunae (small pocket of cells) live at lamellar junctions
 - canaliculi - tiny canals that connect osteocytes

- central canals - center of osteon
 - a.k.a. Haversian canals
 - blood vessels (capillaries) and nerve fibers
- perforating canals
 - a.k.a. Volkmann's canals
 - run at right angles to central canals
 - allows the inside of bone to communicate with the outside (periosteum)

Chemical Composition

- organic components
 - cells - osteogenic cells, osteocytes, osteoblasts, osteoclasts
 - osteoid - organic matrix (ground substance and collagen fibers)
 - gives bone flexibility and tensile strength (resist stretch and twist)
- inorganic components
 - mineral salts - a.k.a. hydroxyapatites (calcium phosphates)
 - gives bone hardness
- right combination of organic and inorganic components makes bone strong without being brittle

Osteomalacia & Rickets

- osteomalacia
 - bone disorders that result in soft or weak bones
 - pain when weight is put on affected bones
- rickets
 - osteomalacia in children
 - bowed legs and deformities of the pelvis, skull, and rib cage common
 - causes - insufficient calcium in diet or a vitamin D deficiency
Bone Function and Structure

OSTEOPOROSIS
- Bone mass peaks at about 35 years
- Osteoclast activity greater than osteoblast
- Osteoporosis occurs when the skeletal system loses bone volume and mineral content due to increased osteoclast activity
- Bones become porous and light making them weak
- Most common in Caucasian females after menopause

Paget’s Disease
- Rate of bone growth and destruction becomes distorted leading to fragile or misshapen bones
- Usually localized to spine, pelvis, femur, and skull
- Characterized by pain and diagnosed through X-rays

![Normal and Osteoporotic Bone Matrix](image1)

![Normal and Paget’s Humerus](image2)