Heat Calculations and Energy

April 21, 2015 Chemistry CP

Some basic concepts

Phase

- ► A <u>homogeneous</u> region with distinct structure and physical properties
- ► In principle, can be isolated
- ► Can be solid, liquid or gas
- Phase Diagram
 - ► Representation of <u>phases</u> present under a set of conditions (Pressure, Temperature, Composition etc.)

Concepts.....

- ▶ Phase transformation
 - ► Change from one phase to another
 - Physical Change
 - ▶ E.g. L \longrightarrow S, S \longrightarrow G etc.
 - Occurs because energy change is either absorbed or released and particles are rearranged
- Phase boundary
 - Boundary between <u>phases in a phase</u> <u>diagram</u>

Phase Changes Involving Solids and Liquids

MELTING

- Phase change from a <u>solid to</u> <u>a liquid</u>
- Molecules

 speed up,
 move farther
 apart, and
 absorb heat
 energy

FREEZING

- Phase Change from a <u>liquid</u> to a solid
- Molecules slow down, move closer together and release heat energy.

Phase Changes Involving Liquids and Gases

VAPORIZATION

- Phase change from a <u>liquid to</u> gas. It occurs at the boiling point of matter.
- Molecules speed up, move farther apart, and absorb heat energy.

CONDENSATION

- ▶ Phase change from a gas to a liquid.
- Molecules slow down, move closer together and release heat

energy.

Phase Changes Involving Solids and Gases

SUBLIMATION

- Phase change from a solid to a gas.
- Molecules speed up, move farther apart, and absorb heat energy.

DEPOSITION

- ► Phase change from a gas to a solid.
- Molecules slow down, move closer together and release heat energy.

Melting, Freezing & Boiling Points

- ► <u>Melting Point</u>: The temperature at which a solid changes into a liquid
- ► <u>Freezing Point</u>: The temperature at which a liquid changes into a solid
 - ► For water <u>0°C</u>
- ▶ <u>Boiling Point:</u> The temperature at which a liquid changes into a gas.
 - ► For water 100°C

Phase Diagrams

- Melting/Freezing:
 Any point on this line (pressure & temperature) the substance is both solid and liquid
- Deposition: Any point on this line (pressure & temperature) the substance is both solid and gas
- Vaporization/
 Condensation:
 Any point on this line (pressure & temperature) the substance is both liquid and gas

KEY POINTS ON PHASE DIAGRAMS

► Triple Point:

Temperature and pressure when all three phases of matter exist

Critical Point:

Above this point the separate liquid/gas phases don't exist, resulting in one "phase" called a "supercritical fluid"

Phase Diagrams Practice

1. At what temperature and pressure does H₂O exist as a solid, liquid and a gas?

Phase Diagrams Practice

PRACTICE

2. At 100°C and a pressure above 1.0 atm, H₂O exists in which phase of matter?

Phase Diagrams

PRACTICE 3. At 100°C and a pressure below 1.0 atmosphere, H₂O exists in which phase of matter?

Pressure (atm)

Heating/Cooling Curve

- ▶ A heating curve shows how the temperature of a substance changes as heat is added at a constant rate.
- NO TEMPERATURE CHANGES DURING PHASE CHANGES

Heating/Cooling Curve

- 1. In the heating curve for iron, describe the phase change that occurred between points D and E on the graph.
- 2. Explain why the temperature stayed constant between points D and E.

