ORBITAL DIAGRAMS, NOBLE GAS CONFIGURATION, LEWIS DOT DIAGRAMS

Exceptions to Electron Configuration Rules- Cu and Cr

Copper Predicted: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁹ Actual: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d¹⁰

Chromium Predicted: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁴ Actual: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d⁵

Reasons for the Exceptions

- Once we get beyond <u>atomic number 40</u>, the difference between the energies of adjacent orbitals is small enough that it becomes much easier to <u>transfer an electron</u> from one orbital to another
- It is more <u>stable</u> to have <u>two partially filled</u> <u>sublevels</u> than to have one completely filled and another partially filled

Electron Configuration

- Electron Configuration: 1s²2s²2p⁶
- Orbital Filling Diagram:
 Orbital image:

Orbital Filling Diagrams

- Each box represents an orbital which can hold a max of 2 <u>e-</u>
- <u>Aufbau principal</u> each electron occupies the lowest energy orbital available; German for "build up"
- Electrons are notated with **an arrow**

5.2

- <u>Up</u> arrow goes first then, <u>down</u> arrow
- Arrows represent the **opposing spin of electrons**

Quantum Theory & The Atom

Orbital Filling Diagrams

Orbital Filling Diagrams

- Hund's Rule when filling a sublevel, each orbital will contain 1 electron before a single orbital will contain 2 electrons
 - The three p orbitals fill in the order shown:

• The number of arrows must match the **number of electrons** contained in the atom

Quantum Theory & The Atom

Orbital Filling Diagrams

- Electron
 Configuration for
 Fluorine
- $1s^2 2s^2 2p^5$

Orbital diagram for 1s²2s²2p⁵ **2p**⁵1 **b**⁸1 **b**⁷1 2s t-review.org 1s $: e^{-}$ with spin = +1/2 e^{-} with spin = -1/2 10 : order e is filled # : orbital

Quantum Theory & The Atom

Orbital Filling Diagrams

Element	Total Electrons	Obital Diagram					
		1 <i>s</i>	2 <i>s</i>	2 <i>p</i>	35		
Li	3						
Na	11						
В	5						

Noble Gas Configuration

Не	
Ne	
Ar	
Kr	
Xe	
D	

- Shorthand electron configuration
 - Give the **symbol of the noble gas in** the previous energy level in brackets
 - Give the <u>configuration</u> for the remaining energy level
- Example:

Sulfur = $1s^22s^22p^63s^23p^4$ [Ne] $3s^23p^4$

Noble Gas Configuration

Не	
Ne	
Ar	
Kr	
Xe	
Rn	

Write Noble Gas Notation for <u>Ca</u>

The preceding noble gas is <u>Ar</u>
Use the periodic table to write the remaining configuration
Answer: [Ar] 4s²

Write Noble Gas Notation for <u>Zr</u>

The preceding noble gas is <u>Kr</u>
Answer: [Kr] 5s² 4d²

Valence Electrons

- Valence electrons: found in the outermost energy level (sometimes called a shell)
 - These electrons are used for bonding
- Example: Nitrogen = $1s^2$ ($2s^2$ $2p^3$)
 - Add up the number of e- (superscripts) in the highest energy level
 - So, nitrogen has 2 + 3 = 5 valence electrons

Valence Electrons

In general, the number of valence electrons of a representative element is equal to the group number

Lewis-Dot Diagrams

- Lewis Dot Diagrams are a way to represent the valence electrons in an atom.
 - Element's symbol represents the nucleus and innerlevel electrons
 - Dots represent the valence electrons

X .	X :	X :	. X :	
Step One	Step Two	Step Three	Step Four	
X	X	X	X	
Step Five	Step Six	Step Seven	Step Eight	

Lewis-Dot Diagrams

- Dots are placed one at a time on the four sides of the symbol, then paired until all valence electrons are used...
 - Maximum of <u>8 electrons</u> will be around the symbol
 - d sublevel electrons are not valence electrons they are in a lower energy level!

Lewis-Dot Diagrams

н		Xe	Examples: Ba	In	Se		He
Li	Be	В	С	Ν	Ο	F	Ne
Na	Mg	AI	Si	Р	S	CI	Ar
к	Ca						