THE MOLE

Background: Atomic Masses

- Look at the "atomic masses" on the periodic table What do these represent?
 - The MASS of an atom (in amu)
 - 1 Carbon-12 atom = 12.00 amu

The Mole

The MOLE (M) is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ¹²C

1 Mole = Avogadro's $\# = 6.02 \times 10^{23}$

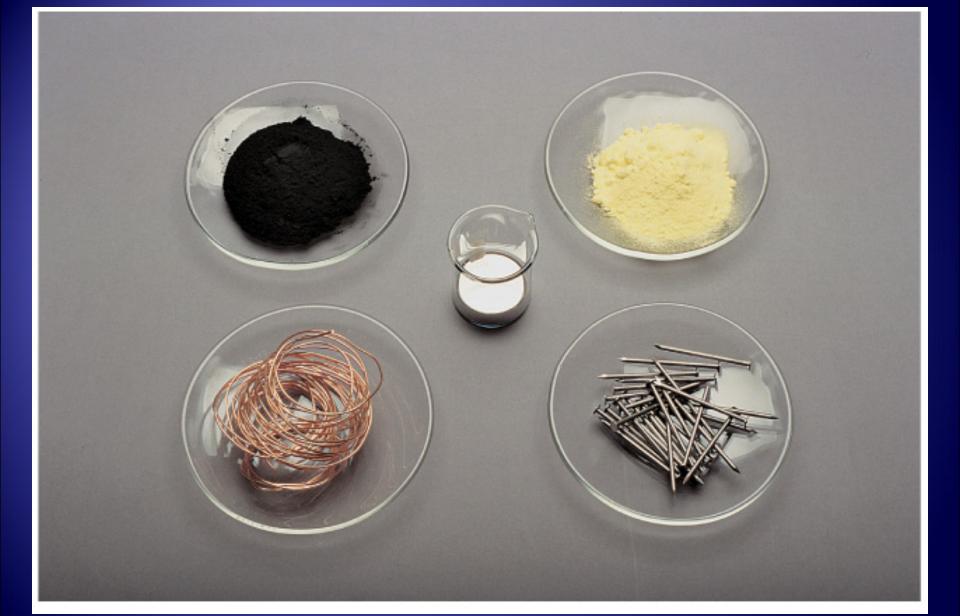
The Mole

A mole is like a "dozen"

1 mole of ANYTHING = 6.02×10^{23} of what it is made up of

1 dozen apples = 12 apples

1 mole of $C = 6.02 \times 10^{23}$ atoms of C


1 dozen baseballs = 12 baseballs

1 mole of Na = 6.02×10^{23} atoms of Na

3 dozen muffins = (12x3) = 36 muffins

3 moles of H = $(6.02 \times 10^{23} \times 3) = 1.81 \times 10^{24}$ atoms of H

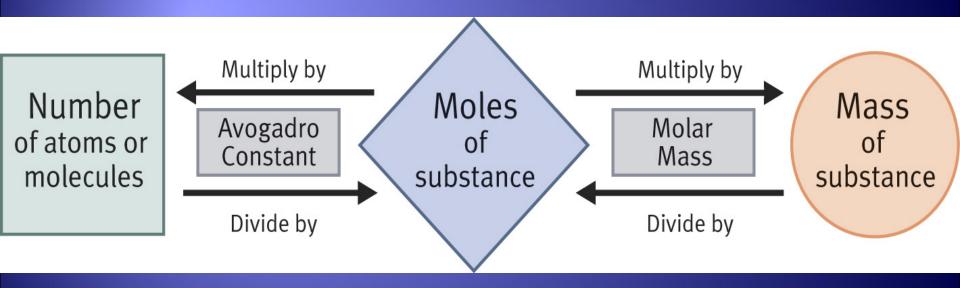
Molar Mass

- Is the <u>mass of 1 mole of a substance</u> (in g)
- Examples:
 - 1 mole Na = 23.0 g
 - 1 mole C = 12.0 q
 - 1 mole Li = 6.9 g

Molar Mass

• Example: Calculate the molar mass of CaCl₂

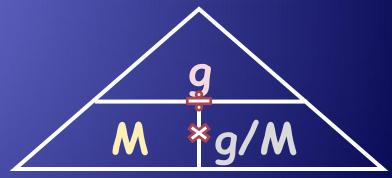
```
• 1 Ca = 40.1 g/M
• + 2 Cl = (35.5 g/M) \times 2
CaCl_2 = 111.1 g/M
```


NOTES

The units for molar mass are g/M

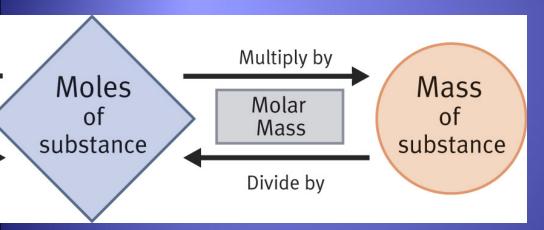
Mole Conversions

- Using simple equation triangles, we can convert moles of a substance into
 - Grams
 - Particles/Molecules
 - Liters
 - And vise-versa....

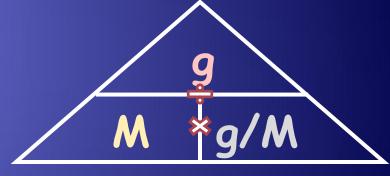

Summary Conversion Chart

Converting Between Grams and Moles

- If we are given the # of grams of a compound we can determine the # of moles, & vise-versa
- In order to convert from one to the other you must first calculate molar mass


$$g = M \times g/M$$

 $M = g \div g/M$



 This can be represented in an "equation triangle"

Ex: Converting Between Grams and Moles

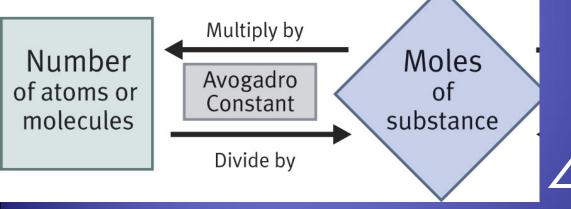
Question: How many moles are in 22.0 g of copper metal?

Solution: Mass of substance ÷ Molar Mass = Moles 22.0 grams ÷ 63.5 g/M = 0.346 M

Converting Between Moles & Molecules

- If we are given the # of moles (M) of a compound, we can determine the # of particles/molecules (m) in the compound & vise-versa
- In order to convert moles to particles you must know how many particles are in a mole
 - Avogadro's Number • 6.022×10^{23} particles in a mole $m = M \times 6.022 \times 10^{23}$ $M = m \div 6.022 \times 10^{23}$

Example: Converting Between Moles & Molecules


Question: How many molecules are in 0.7 Moles of

m

 6.02×10^{23}

M

Oxygen?


```
Solution: # Moles × Avogadro's # = # molecules 0.7 \text{ M} \times 6.02 \times 10^{23} =
```

Converting Between Moles & Liters of Gas

- Gases are measured in liters
- Under certain conditions.....

1 mole of any gas = 22.4L

- These conditions are known as STP....
 - Standard Temperature and Pressure
 - Pressure = 1 atm
 - Temperature = 273K

Converting Between Moles & Liters of Gas

 If we are given the #of Moles of a gas, we can determine its volume in Liters, at STP.

 In order to convert Moles to liters you must know that...

• 1M of gas = 22.4L

 $V = M \times 22.4L$ $M = V \div 22.4L$

Example: Converting Between Moles & Liters of Gas

Question: How many moles are in 65.7 L of

sodium?

Moles = $65.7 L \div 22.4 L/M$

Moles = 2.93 M