Electrons in Atoms

October 27, 2014

October 29, 2014

ELECTRON CONFIGURATION

Review of Atomic Theory

• **Thomson** discovered the electron

5.2

- <u>Bohr</u> determined that the electrons travel around the nucleus according to energy; electrons with lower energy are closer to the nucleus
- <u>Quantum Mechanical Model</u> says electrons orbit the nucleus in "clouds"; there is a high probability of finding them somewhere along these paths

Electron Cloud

- Each <u>energy level</u> in the electron cloud model can hold a limited number of electrons.
- The lowest energy level is the smallest and the closest to the nucleus and is assigned a number of one.
 - Up to seven energy levels have been detected.
 - First energy level holds a maximum of **two electrons**.
 - Second energy level is larger because it is farther away from the nucleus. It holds a maximum of <u>eight electrons</u>.
 - Third energy level is larger still and holds a maximum of <u>18 electrons</u>

Electron Orbitals

Conceptual Model of Energy Levels Where n = energy level

Bohr Model of Carbon

Organization of Electrons

- Electrons are restricted to energy levels based on the amount of <u>energy they have</u>
- Lowest energy level is assigned **#1**
- On the periodic table, each period <u>(horizontal</u> <u>row) is an energy level</u>

Energy Sublevels

- Within each energy level, there are energy <u>sublevels</u>
- The 4 sublevels are identified by a letter and listed in increasing complexity: <u>**s**</u>, <u>**p**</u>, <u>**d**</u>, <u>**f**</u>
- The letters stand for the way the emission lines look...

= sharn	IA IIA									۱ ۱	/IIIA
	н 1s ¹						IIA IVA	A VA	VIA	VIIA	2 не 1s ² -
= <u>principal</u>	3 Li 4 Be 2s1 2s2						5 В Б 2р1 2р	07 N 2[2p3	8 0 2p4	9 F 2p5	10 Ne 2рб
= diffuse	11Na 12Mg 3s1 3s2						13 AI 14 3p1 3t	si 15 P 52 3p3	16 s 3p4	ਜਿੰ ਗ 3p ⁵	18 Ar 3p ⁶
	1976 - Ca 45 - 152	3d ¹ 3d ²	23 V 24 Cr 3d3 3d4	25 Mn 26 Fe2 3d ⁵ 3d ⁶	27 Co 28 Ni 1 3d7 3d8	29 Cu 30 Zn 3d9 <mark>3d10</mark>	31Ga 32 4p1 4	Ge 33 52 4p	arse 4r4	35 Br (4p ⁵	36 Кл 4р ⁶
= <u>fundamental</u>	57, 587 Sr 581 582	39 V 40 Zr 4d1 4d2	41 NB 42 Mo 4d3 4d4	43 To 4 Ru 4	45 Rh 46 Pd 4d7 4d8	47 Ag (48 Ca 4 d 9 4 d 1 0	491n 50 5p1 5t	sn 51 52 5p	5p4	53 IS 5p5	54 Xe 5p6
	55Cs 56 Ba 6s1 6s2	71 Lu 72 Hr 5d ² 5d ²	73 T≋ 74 W 5d3 5d4	o Rei o Ost d5 id6	77 ir 78 Pt 5d7 5d8	79 Au 80 Hg 5d ⁹ 5d ¹ C	зіт ві 6р16;	РЫ83 Ві ⊳2 (бр.3	84Ро 6р4	85 Ас 6р ⁵	36 Rn 6p6
	87 Fr 88 Ra 7s ¹ 7s ²	103Lr 104 6d ² 6d ²	105 106 6d ³ 6d ⁴								
		57 La 5 4f ¹ 4	8 се 59 Pr Б. If2 4f3 4	1 Na 61 Pm 62 1 ⁴ 41 ⁵ 41	5m 63 Eulor 6 4f7	9 4f ⁹ 4	бу 67 н f10 4f1	o 68Er (t 1 4f12	91m 70 4f13 4	гүр f <mark>14</mark>	
		89 Ao 91 5f ¹ 5	0 Th 91 Pa 92 5F2 5F3 5	2 U 193 Np 194 1 ⁴ 51 ⁵ 51	Pu 95 Am 9 6 5f7 5	Cm 97 Bk 98 8 5f ⁹ 5	⊧ Cr 99Es f ¹⁰ 5f1	s 100 Fm1 1 5f12	01M8 10 5f1 3 5	12NG F ¹⁴	

IA	IA																	VIIIA
і н 1е1												IIIA		YA	٧A	VIA	VIIA	2 Не 1-2
15. 8 11	4 Be											5	в	ь с	7 N	8 0	y F	IU Ne
2s1	2s ²											2p	51	2p ²	2p3	2p4	2p5	2p ⁶
11Na 2-1	12Mg											13 Эн	AL 1	14 Si 2~ 2	15 P	16 S	17 CL 25 5	18 Ar 0- 6
35	354				20.00			24.6			21 20	기	21	304 2264	30-2	зрт	-3p⊻ as p⊭	30° 26 Ke
45	2000 102	3d1	3d2	3d3	3d4	3d5	3d6	3d7	3d8	3d9	3d10	4p	51 51	4p2	4p 8	4	4p5	4p6
87N (*	2 Sr	39 Y	40 Zr	41 N.	42 Mo	43 To	H Ru	45 R.h	46 P.d	47 Ag	48 C d	49	In	50 Sn	51	e le	53 <u> </u>	54 Xe
5s1	5s2	4d1	4d2	4d ³	4d ⁴	4 	-de	4d /	4d ⁸	4d ^y	4d14	5p	51	5p2	5p P	5p4	5p5	5p ⁶
55Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	5 Re	6 Os	77 ir	78 Pt	79 Au	80 Hg	81	Т	82 Pb	83 Bi	84 Po	85 At	86 Rn
6s1	6s4	5d4	5d4	5d3	5d4	<u>(12)</u>	do.	5d7	5d8	5d9	5d14	6p	1	6p4	6p3	6p4	6pp	бръ
B7Fr	88 Ra	103Lr	104	105	106													
7s1	7s4	6d4	6d4	6d3	6d4													

67 L	a 58 Ce	59 Pr	60 Nd	61 Pm	62Sm	63 Eu	br	D.	65 I.B	66Dy	67 Ho	68Er	69 I.M.	70 Y b
4f1	4f2	4f3 -	4r4 -	4f5 -	4f6 -	4f7	H	8	4f ⁹	4f10	4f11	4f12	4f13	4f14
89 A	5 90 Th	91 Pa	92 U	93 No	94 Pu	95 Am	g	Cm	97Bk	98 Cf	99Es	00 Fm	10 IMB	102No
561	5f2	563	564	565	566	567	c	8	569	5f10	5f11	5612	5f13	5f14
21.5	101-	015	101	015	015	01.5	1.2	-	015	01.5	01.55	01.5	01.5	21.5

- Each sublevel contains a different # of orbitals, where the electrons are found 90% of the time
 - Orbitals are 3-D clouds that give volume to the atom
 - Pauli Exclusion Principal: Each orbital can only contain 2 electrons, which have opposing spins

Sublevel	# orbitals	Max # e-
S	1	2
р	3	6
d	5	10
f	7	14

Locating Electrons

- There are two ways to show where the electrons are found in the atom
 - Electron configurations

5.2

– Orbital filling diagrams

Element	Total	Orbita	Electron		
	Electrons	1s 2s	2p	3 s	Configuration
н	1	1			$1s^1$
He	2	11			$1s^{2}$
Li	3	111			$1s^2 2s^1$
Be	4	1111			$1s^2 2s^2$
в	5	1111			$1s^2 2s^2 2p^1$

Electron Configuration

- Shorthand method for describing the <u>arrangement of electrons</u>
- Composed of the principal energy level followed by the energy sublevel and includes a superscript with the # of electrons in the sublevel

Electron Configuration

- Electron Configuration is ordered the way you read a book: from <u>left to</u> <u>right and top to bottom</u>
- Note that d orbital is 1 energy level behind and the f orbital is 2 energy levels behind the s & p orbitals

1s	_			1 s
2s]			2p
3s	1			Зр
4s		3d	4p	
5s		4d		5p
	* 4f	5d		6р
7s	* 5f	6d		

4f
5f

Electron Configuration

- Determine how many <u>electrons</u> in atom
- Fill <u>lowest energy</u> first (using Arrow Diagram)
- Stop when <u>sum of</u>
 <u>subscripts</u> is equal to electrons

The order: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p⁶ 7s² 5f¹⁴ 6d¹⁰ 7p⁶ etc.

- Hydrogen: 1s¹
- Oxygen: **1s¹2s²2p⁴**
- Argon: 1s²2s²2p⁶3s²3p⁶
- Copper: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁹