-

7.2 Means and Variances of Random Variables
The Variance of a Random Variable

The mean is 2 measure of the center of 2 distribution. Even the most basic numer-
ical description requires in addition 2 measure of the spread or variability of the
distribution. The variance and the stendard deviation are the measures of spread
that accompany the choice of the mean to measure center. Just as for the mean,
we need a dxstmct symbol to distinguish the variance of a random variable from
the variance s” of a data set. We write the variance of a random variable X as o2
Once again the subscnpt reminds us which variable we have in mind. The def-
nition of the vanartcc o of 2 random variable is similar to the definition of the
sample variance s given in Chapter 1. That is, the variance is an average of the
squared deviation (X — ux)? of the varizble X from its mean py. As for the mean,
the average we use is a weighted average in which each outcome is weighted by
its probability in order to take account of outcomes that are not equally likely.
Calculating this weighted average is straightforward for discrete random variables
but requires advanced mathematics in the continuous case. Here is the definition.

Variance of a Discrete Random Variable

Supposé that X is a discrete random variable whose distribution is

Value of ¥ x x3 x3 o i

Pfubabm’[}’: 4 P2 b3 i bi
and that u is the mean of X. The variance of X is

= —m’h+ (-t .+ (-
=X(xi — e’

The standard deviation oy of X is the squarc. root of the variance,

1P

EZCIT AL Linda sells cars

Variance of 2 random variable

Lindz is a sales associate at 2 large auto dealership, She motivates herself by using probabil-
ity estimates of her sales. For 2 sunny Saturday in April, she estimates her car sales as follows:

Cars sold: 0 1 2 3
Probability: 0.3 0.4 0.2 0.1

We czn find the mean and variance of X by amranging the caleulation in the form ofa table.”
Both py and z:r1 are sums of columns in this table,

Xi B Xipi — w0 p;

0 03 00 (0- 1.1)1(0.3) = 0.363

1 04 04 (1-L1)04)=0004

2 02 04 (2-L)Y02) =016

301 03 (3-11%01)=036l
1 o2 = 0.890
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invalid signatures in a sample of size 1000 have (approxi-
mately) a binomial distribution? Explain.

7.54 A coin is to be tossed 25 times. Let x = the number
of tosses that result in heads (H). Consider the following
rule for deciding whether or not the coin is fair:

Judge the coin to be fairif 8 = x = 17.
Judge it to be biased if either x = 7 or x = 18.

a. What is the probability of judging the coin to be
biased when it is actually fair?

b. What is the probability of judging the coin to be fair
when P(H) = .9, so that there is a substantial bias? Re-
peat for P(H) = .1.

c. What is the probability of judging the coin to be fair
when P(H) = .67 When P(H) = .4? Why are the prob-
abilities so large compared to the probabilities in part b?
d. What happens to the “error probabilities” of parts a
and b if the decision rule is changed so that the coin is
judged fair if 7 = x < 18 and unfair otherwise? Is this a
better rule than the one first proposed?

7.55 A city ordinance requires that a smoke detector be
installed in all residential housing. There is concern that
too many residences are still without detectors, so a costly
inspection program is being contemplated. Let 7 = the
proportion of all residences that have a detector. A ran-
dom sample of 25 residences will be selected. If the sample
strongly suggests that 7 < .80 (fewer than 80% have de-
tectors), as opposed to m = .80, the program will be im-
plemented. Let x = the number of residences among the
25 that have a detector, and consider the following deci-
sion rule:

Reject the claim that 7 = .8 and implement the pro-
gram if x = 15.

a. What is the probability that the program is imple-
mented when 7 = .80?

b. What is the probability that the program is not im-
plemented if 77 = .70? If m = .60?7

c. How do the “error probabilities” of parts a and b
change if the value 15 in the decision rule is changed
to 14?7

A
Vi

r
viv

(
\

7.56 Exit polling has been a controversial practice in re-
cent elections, since early release of the resulting infor-
mation appears to affect whether or not those who have
not yet voted will do so. Suppose that 90% of all regis-
tered California voters favor banning the release of infor-
mation from exit polls in presidential elections until after
the polls in California close. A random sample of 25 Cali-
fornia voters is selected.

a. What is the probability that more than 20 favor

the ban?

b. What is the probability that at least 20 favor the ban?

¢. What are the mean value and standard deviation of

the number who favor the ban?

d. If fewer than 20 in the sample favor the ban, is this

at odds with the assertion that (at least) 90% of the -

populace favors the ban? (Hint: Consider P(x < 20)

when 7 = .9.)

7.57 Sophie is a dog who loves to play catch. Unfortu-
nately, she isn’t very good, and the probability that she
catches a ball is only .1. Let x = number of tosses required
until Sophie catches a ball.

a. Does x have a binomial or a geometric distribution?

b. What is the probability that it will take exactly

two tosses for Sophie to catch a ball?

c. What is ..« probability that more than three tosses

will be required? :

.7.58 Selected boxes of a breakfast cereal contain a prize.

Suppose that 5% of the boxes contain the prize and the
other 95% contain the message “Sorry, try again.” A con-
sumer determined to find a prize decides to continue to
buy boxes of cereal until a prize is found. Consider the
random variable x, where x = number of boxes purchased
until a prize is found.

a. What is the probability that at most 2 boxes must be

purchased?

b. What is the probability that exactly four boxes must

be purchased?

c. What is the probability that more than four boxes

must be purchased? '
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1. Weights of the Pacific yellowfin tuna follow a normal distribution with mean weight 68 pounds and
standard deviation 12 pounds. For a randomly caught Pacific yellgéxr/\ficr_‘l\tuna, what is the probability

that the weight is TUnQs b) 78068 <)
\2
a. less than 50 pounds? ‘j 0 (x7801hS)* 1~0.8W13°0.158

b. more than 80 pounds? .

~ X . ¢ MaY tungwn
c. between 50 and 80 pounds? 3x a15.87/. chanc '

3 ug sl 6§ 09204 'PS pegreater ynan 50 \bs.

. ' oraongt
) F\i\K_ : 0‘52:60%’0’-_-1,5
z: S0-68. -1.5 12 :
\2 ;
P(-1.5<2£4 1 )= 0.8413-0.066%- 01149 Pzt J = 8:0663 will b
21X G 17,457, charlce that e Tunawill weigh betkeen  3x o 6,637 (rance wnad and
%0 and &0 lbs. 002 Tar) Sbies

2. A malaria prevention pill was developed to protect U.S. soldiers in the South Pacific during World
War II. The pill had a number of mildly unpleasant side effects, so most soldiers wanted to take as
few pills as possible. After extensive medical work using blood tests, it was found that for a single
pill the duration of protection times was normally distributed, with mean | =72 hours and standard
deviation o = 8 hours. If each soldier in a battalion was given a pill at breakfast mess (and ordered
to take it), after how many hours should another pill be issued so that

a. Fewer than 10% of the soldiers in the battalion were unprotected frem malaria?
b. Fewer than 5% were unprotected from malaria?

¢. Fewer ﬂlan}% were unprotected from malaria?  maldoio

0 A, a0 G

: Z = -1.pUs
Ly =1 7 -l.eys = X-12

X _ :
\th Y el Je s 48 st gy 1 S0 A nrs Yp: ‘55'\51\4 hrs
26y nrs  C) matai i G il
z2=-2.33

7133-!iﬁ

i / b x=53.56% 53 nes -
3. The Fight For Life emergency helicopter service i$ ‘avai gﬁé‘- for medical emergencies occurrh%z ¢ from
15 to 90 miles from the hospital. Emergencies that occur closer to the hospital can be handled
effectively by ambulance service. A long-term study of the service shows that the response time from
receipt of the dispatch call to arrival at the scene of the emergency is normally distributed with mean
42 minutes and standard deviation 8 minutes. For a randomly received call, what is the probability

that the response time will be

5 - ¥ & rimes -
a. between 30 and 40 minutes? ) Z- q_g__ua --0.25 gz BT S S g o

b. less than 30 minutes? 7 . N
c. more than 60 minutes? p(—1.9 <2 <-0.25)= 0.4013- 0.0668 <102 > N
i S N, TP

Y @23-M57. chante yhar vespunse e A7 S .
-1\‘!’}'%1 \Js L{be'\'weﬁn 30 Gl.s"i_f‘r.‘-m\;'ﬂlﬁ‘\—, 13 26 34 U2 sb S8 66y
) 2=-1.9

A : -4 .
p(2<¢-1.S)+ 0.0[9&8*“;\4 ?Gdbg_i’x%”}m 0) 2 @9-8- 2215
2 05p Timg.s reSpOnse fime i ¢ o —
F.CSVJ‘@E( | W \_ﬂ‘:i H"‘z}(\}h 30 N~ p (2 -)2.2- 53 3 \ - 0‘5’\8]8 - '0 lLZ
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ggction 5.3 Counting Technifues (Optional)

PREE.R}:?SPONSE QUESTIONS
open-Ended Questions (page 112)
15°7-4=140
2.26°26" 26+ 10 * 10 * 10 = 17,576,000
3,41 41 - 41 = 68,921
495105 =2250. Note: Only 9 numbers are
possible for the 1st digit.
54°3°2+1°4-3-2-1=576

10

10

210

. 210

. 2,598,960
2,598,960

6.

me o g

4
b. Order matters since each order will give a differ-
ent set of officers. Therefore, we have 1pP = 5,040.

10V(8Y(5) _
> ( 3 )(2)( 1) = 16800
(150)(40 +35+ 20)
0 12
10. (245) = 7.36 X 1076, very unlikely.
12
(52)e)
3/\2\0
1. ————— =923 x107¢
()
5

section 5.4 Binomial and Geometric Probahility

VIULTIPLE-CHOICE QUESTIONS (page 118)
1. D For 8 games, this situation follows Binomial(8, .4).

2. A or C We are counting the number of arrange-
ments for a specific order.

3. B This is a geometric situation.
4. C This is only a characteristic of a binomial.
5.C nPr=rt"nCr

FREE-RESPONSE QUESTIONS
Open-Ended Questions (page 118)

1. a. Binomial: probability is the same on each trial;
each trial is independent; fixed number of trials.
b. Let X = the number of homeruns in the
50 at-bats.

c. PX)= —12T; number of trials = 50
d. {0,1,2,...,50}

2. a. Let X = number of boxes until you get a picture
of Babe Ruth
b. Probability on each trial is the same; independent
trials; X = number of trials.
c. {1,2,...}

It is recommended that these probabilities be calcu-
lated directly as indicated and checked using the func-
tions on the DISTR menu of the TI-83.

3. (170)(.67)(.43) = 2150

s, (?g)(.7915)(.2115) =.00031

5. No, because p may not be the same on all trials; each
trial may not be independent as well.

6. (g)(.53)(.52) =3125

7. (g)(.75°)(.256) + (2)(.75‘)(.255) I (g)(JsS)(.zsl)
= binomcdf(6, .75, 5)
—1- (2)(.756)(.250)
= 8220

8. (1;’)(.78)(.32) + (‘g)(.ﬁ)(.sl) + (ig)(yw)(.s")
= binomcdf(10, .7, 10) — binomcdf (10, .7, 6) = .6496

9. a. Geometric; .8(.2) = .16
b. Geometric; (.8°)(.2) = .0268
c. P(getting Babe Ruth) = .2; P(getting Mickey
Mantle) = .2. Therefore, P(getting neither Babe
nor Mickey) = .6
Therefore, p = 2+ (6X2) + (62D + ...
= .2(.6) ~ ! that is, an infinite geometric series

i= ]2
-6 "

Or note that since the probability of getting
cither star is the same, there is a probability of
50% that one will occur before the other assuming
that there are equal numbers of pictures available.

Answer Key 343



L) | Bmomm\ blc of e jet N
H ot
0) | RANAGW varianig < NGMe runs
O LIY15 e H 6f nonne NANS our of SO & “bads
A) 0 £ XSO
260 NumpLr 6f ooxes opengo before 002 Futhh DI (¢ v hoy
D) T4 15 +he number of 4riars WartL 16 suecess
Ay L <v <L o
3.0 b(r=):C g (0.6 (0.4Y
| 202150
AY A 21564, chance Yhatr Hney Wil win 1 oof neyt 10 games,
Yl plr:19): Cap ps0ad)’” (6,20
0. U003 : 3.08 X\ ™
IX & 0.03087 chaince Wat he win conp € 1S awt of 30 passeS.
5.|NosbeCaUse e Hrials may be dependent or the prob alhliry

™ of Success con tnang e
O Ple:3)= Cs,3 (0.5 (0.5)°
; 0:3125
13X & 3125/, cnond Mok Hare will be eXaHY 3 T“‘
1.1P(r€S) = V- Ples6)
° 1= Cg,6 (675)°(0.25)
| £ 0.8120
i3)( an 82.17. Chance Haar player will SCore o G nnos S of nexd b shods,
r. | Perz1) = 1= binemceaf (19,0.7,6)
= 0.6446
A% 0 04867 chan nat atl students wit pass 64 Las 1 of next () £585,
3) p= .20
P(X:2) = 0.80' 0.20'
“0.16
_ W a 1b7. cnonce that piCet BakeRutiats n Lnd box,
& B P (X< 10) <060 (020)

. 002684 Y a 2.684/ chance m# p\co{ pabe Rk {5 1 (0t boX.
C) ‘ Mg)a\oe /0 2 F S
| U sgatg= V0202 S

~———— | 507/.,5ih@ expeUed valeis sane. -






XVIV B0T A 10 ON THE BVIY /0

SUuN

— s
o

/A iy i /18 %f v S/

AR AR A

- z/\l
fuf ssud o e 05 7 p(albuaf=1-0.9997%. 0do)
A &

/[
2 &)

nQD+er T EOCULS Prplb\em

yn

e VA

]

00 {p@bylﬁ[)&av}

|.-er0u (0o 15\0 BUUOB.‘}LU t( 95

N
2: 5600 -5000/~1.5
o~ 00 | \
%:TZUDIB*D()UK M /

500

/—\~
P (17200€X ¢ 8900) /UHJ‘-H‘OOSHX O‘io\

ix & 90.9%" Nd 8900 peop e

Vv .
show WP




I
N

‘s N




The central limit theorem allows us to use normal probability calcu-
lations to answer questions about sample means from many observations
even when the population distribution is not normal.

The time that a technician requires to perform preventive maintenance o an
air-conditioning unit is governed by the exponential distribution whose density
curve appears in Figure 9.11(a). The mean time is # = 1 hour and the stan-
dard deviation is ¢ = 1 hour. Your company operates 70 of these units. What
is the probability that their average maintenance time exceeds 50 minutes?
The central limit theorem says that the sample mean time ¥ (in hour)
spent working on 70 units has approximately the normal distribution with
mean equal to the population mean g = 1 hour and standard deviation

~a—2—1-;=17h0ur
JIO 0 T

. The distribution of ¥ is therefore approximately N(1,0.12). Figure 9.12 shows
3 this normal curve (solid) and also the actual density curve of ¥ (dashed).

FIGURES.12 The exact distribution (dashed) and the normal approximation
from the central limit theorem (solid) for the average time needed to maintain
an air conditioner, for Example 9.9.



Sample Means

Because 50 minutes is 50/60 of an hour, or 0.83 hour, the probability we

want is

A2 A4
= P(Z > —1.42) = 9222

P(sz>.83)=P(f"1 >'83—1)

This is the area to the right of 0.83 under the solid normal curve in Figure 9.12.
The exactly correct probability is the area under the dashed density curve in
the figure. It is 0.9294. The central limit theorem normal approximation is off
by only about 0.007.

9.30

9.31

The scores of students on the ACT college entrance examination in a
recent year had the normal distribution with mean . = 18.6and standard
deviation ¢ = 5.9.

(a) What is the probability that a single student randomly chosen from all
those taking the test scores 21 or higher?

(b) Now take an SRS of 50 students who took the test. What is the prob-
ability that the mean score ¥ of these students is 21 or higher?

A bottling company uses a filling machine to fill plastic bottles with cola.
The bottles are supposed to contain 300 milliliters (ml). In fact, the con-
tents vary according to a normal distribution with mean p = 298 ml and
standard deviation o = 3 ml.

(a) What is the probability that an individual bottle  contains less than
295 ml?

(b) What is the probability that the mean contents of the bottles in a six-
pack is less than 295 ml?



This famous fact ofprobabiiit); is called the central limit the-
orem. It is much more useful than the fact that the distribution of 7 is
exactly normal if the population is exactly normal.

Draw an SRS of size n from any population whatsoever with
mean p and finite standard deviation o. When n is large, the
sampling distribution of the sample mean X is close to the normal
distribution N (, o/,/n) with mean u and standard deviation
cr/ﬁ.

How large a sample size n is needed for ¥ to be close to normal de-
pends on the population distribution. More observations are required if
the shape of the population distribution is far from normal.

Figure 9.11 shows the central limit theorem in action for a very nonnormal
population. Figure 9.11(a) displays the density curve for the distribution of the
population. The distribution is strongly right-skewed, and the most probable
outcomes are near 0 at one end of the range of possible values. The mean u
of this distribution is 1 and its standard deviation o is also 1. This particular
distribution is called an exponential distribution from the shape of its density
curve. Exponential distributions are used to describe the lifetime in service of
electronic components and the time required to serve a customer or repair a
machine.




Figures 9.11(b), (c), and (d) are the density curves of the sample means
of 2, 10, and 25 observations from this population. As 7 increases, the shape
becomes more normal. The mean remains at u = 1 and the standard devia-
tion decreases, taking the value 14/n. The density curve for 10 observations is
stili somewhat skewed to the right but already resembles a normal curve with
K = lando = 14/10 = 32.The density curve forn = 25 is yet more nor-
mal. The contrast between the shape of the population distribution and the
distribution of the mean of 10 or 25 observations is striking.

FIGURES.11  The central limit theorem in action: the distribution of sample
means ¥ from a strongly nonnormal population becomes more normal as the
sample size increases. (a) The distribution of 1 observation. (b) The distribution
of ¥ for 2 observations. (c) The distribution of % for 10 observations. (d) The
distribution of % for 25 observations.



The previous chapter introduced discrete and continuous random vari-
ables and described methods for finding means and variances, as well as
rules for means and variances. This chapter focused on two important
classes of discrete random variables, each of which involves two outcomes
or events of interest. Both require independent trials and the same prob-
ability of success on each trial. The binomial random variable requires a
fixed number of trials; the geometric random variable has the property that
the number of trials varies. Both the binomial and the geometric settings
occur sufficiently often in applications that they deserve special attention.
Here is a checklistof the major skills you should have acquired by studying
this chapter. '

A. BINOMIAL

L. Identify a random variable as binomial by verifying four conditions:

two outcomes (success and failure); fixed number of trials;
independent trials; and the same probability of success for each trial.

2. Use TI-83 or the formula to determine binomial probabilities and

construct probability distribution tables and histograms.

3. Calculate cumulative distribution functions for binornial random

variables and construct cumulative distribution tables and histograms.

4. Calculate means (expected values) and standard deviations of

binomial randorm variables.

B. GEOMETRIC

1. Identify a random variable as geometric by verifying four conditions:

two outcomes (success and failure); the same probability of success
for each trial; independent trials; and the count of interest is the
number of trials required to get the first success.

2. Use formulas or a TI-83 to determine geometric probabilities and

construct probability distribution tables and histograms.

3. Calculate cumulative distribution functions for geometric random

variables and construct cumulative distribution tables and histograms.

4. Calculate expected values of geometric random variables,

In 1996 there were 869 road fatalities in Virginia, according to the Vir-
ginia Department of Motor Vehicles. Of these, 346 were alcohol-related.
A DMV analyst wants to randomly select several groups of 25 road fatalities
for further study. Find the mean and standard deviation for the number of
alcohol-related road fatalities in such groups of 25. What is the probability
that such a group will have no more than 5 alcohol-related road fatalities?



450

841

8.42

8.44

3

8 The Binomial and Geometric Distributions

Three friends each toss a coin. The odd man wins; that is, if one Coin
comes up different from the other two, that person wins that round. If the
coins all match, then no one wins and they toss again. We're intereste( in
the number of times the players will have to toss the coins until someone
wins.

(a) What is the probability that no one will win on a given coin toss?

(b) Define a success as “someone wins on a.given coin toss.” What is the
probability of a success?

(¢) Define the random-variable of interest: X = number of TR
X binomial? Geometric? Justify your answer.

(d) Construct a probability distribution table for X. Then extend your
table by the addition of cumulative probabilities in a third row: -

(e) What is the probability that it takes no more than 2 rounds for some-
one to win? ' ;

() What is the probability that it takes more than 4 rounds for someone
to win?

(g What is the expected number of tosses needed for someone to win?

3]:({ Use the randint function on your TI-83 to simulate 25 rounds of
play. Then calculate the relative frequencies for X = 1,2,3,....Com-
pare the results of your simulation with the theoretical probabilities-
you calculated in (d).

This exercise provides visual reinforcement of the relationship between
the probability of success and the mean (expected value) of a geometric
random variable.

(a) Begin by. completing the table below, where X = probability of success
and Y = expected value. ,

X A0 .20 .30 40 .50 .60 70 .80 .90
Y

(b) Make a scatterplot of the points (X, Y).

(¢} Enter the data into your TI-83 and perform power regression (STAT
/ CALC / A:PwrReg) on the data. Notice the r-value, and remember
that the caleulator transforms the data into a linear association and
finds the correlation between the transformed values.

Suppose that Roberto, a well-known major league baseball player, finished
last season with a .325 batting average. He wants to calculate the proba-
bility that he will get his first hit of this new season in his first at-bat. You
define a success as getting a hit and define the random variable X = num-
ber of at-bats until Roberto gets his first hit.

(a) What is the probability that Roberto will get a hit on his first at-bat
(i, thatX = 1)

(b) What is the probability that it will take him at most 3 at-bats to get his
first hit?

(c) What is the probability that it will take him more than 4 at-bats to get
his first hit?



We summarize as follows:

The probability that it takes more than 7 trials to see the first
success is

P(X >n) = (1 - p)"
) 4_‘1‘

Before we had the geometcdf function on the TI-83, we would ha—
bitually use this result to answer questions of the form P(X > n). Although
the importance of this result is somewhat diminished in an age of ready
access to computers and graphing calculators, it is still quite useful.

8.27  Consider the following experiment: flip a coin until a head appears.

(a) Use the TI-83’s geometpdf ( command to construct the p.d.f. table -
for this experiment. Then have the calculator plot the probability his-
togram.

(b) Use the techniques described in this section for plotting the p.d.f. to
compute the c.d.f. and plot its histogram.

8.28  (a) Plot the cumulatwe distribution histogram for the die-rolling exper-
iment described in Example 8.13 with the p.d.f. table in Example
" 8.15.

(b) Find the probability that it takes more than 6 rolls to observe a 3.
(c) Find the smallest positive integer k for which P(X = k) > .99.

8.29  Abasketball player makes 80% of her free throws. We put her on the free
throw line and ask her to shoot free throws until she misses one. Let X =
the number of free throws the player takes until she misses.

(a) What assumption do you need to make in order for the geometric
model to apply? With this assumption, verify that X has a geometric
distribution. What action constitutes “success” in this context?

(b) What is the probability that the player will make 5 shots before she
misses?

(c) What is the probability that she will make at most 5 shots before she

rmsses?



. "SUMMARY: "

A count X of successes has a geometric distribution in the geometric setting if
the following are satisfied: each observation results in a success or a failure;
each observation has the same probability p of success; observations are
independent; and X counts the number of trials required to obtain the

first success. A geometric random variable differs from a binomial variah)e
because in the geometric setting the number of trials varies and the desireg

number of defined successes (1) is fixed in advance.

IfX has the geometric distribution with probability of success p, the possi-
ble values of X are the positive integers 1, 2, 3, ... . The geometric probability
that X takes any value is

P(X =n)=(1-p)"p

The mean (expected value) of a geometric count X is 1/p.
The brobability that it takes more than n trials to see the first success s

PX=n)=1(1=pr

SECTION 8.2 EXERCISES
Summary .

8.32 © Carla makes random guesses on a multiple choice test that has five choices
for each question. We want to know how many questions Carla answers
until she gets one correct.

(a) Define a success in this context, and define the random variable X of
interest. What is the probability of success?

(b) Whatis the probability that Carla’s first correct answer occurs on prob-
lem 57

(c) Whatis the probability that it takes more than 4 questions before Carla
answers one correctly?

(d) Construct a probability distribution table for X.

(e) If Carla took a test like this test many times and randomly guessed at
each question, what would be the average number of questions she
would have to answer before she answered one correctly?

833 Insome cultures, it is considered very important to have a son to carry on
the family name. Suppose that a couple in one of these cultures plans to
have children until they have exactly one son.

(@ Find the average number of children per family in such a culture.
(b) What is the expected number of girls in this family?

(¢) Describe a simulation that could be used to find approximate answers
to the questions in (a) and (b).
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The expected value and other noteworthy
properties of the geometric random variable

If you're flipping a fair coin, how many times would you expect to have to
flip the coin in order to observe the first head? If you're rolling a die, how

many times would you expect to have to roll the die in order to observe the
first 37 If you said 2 coin tosses and 6 rolls of the die, then your intuition

is serving you well. Here is the principle.

THE MEAN OF A GEOMETRIC RANDOM VARIABLE

If X is a geometric random variable with probability of success
p on each trial, then the mean, or expected value, of the random
variable, that is, the expected number of trials required to get the

first success, is u = 1/p.

The demonstration of the preceding faétproceeds as follows. The notation
will be simplified if we let p = probability of success and let ¢ = probability
of failure. Then ¢ = 1 — p and the probability distribution table looks like

this:
8 The Binomial and Geometric Distributiong

X 1 2 3 4
PX) | p pg pg® pg?

The mean (expected value) of X is calculated as follows:

L(p) + 2(pq) + 3(pqg?) + 4(pg>) + -~
= p(l + 29 + 3¢ +4¢° + )

7

1
:P(I—Zqﬂzz)
1 71
_p[(l—q)z]
- o2
pl
1

p

There is another interesting result that relates to the probability that
it takes more than a certain number of trials to achieve success. Here are
the steps:

PX>n)=1-PX = n)
=1—(p+qgp+qp+-+q""'p)

I=p(l+g+g°+-+¢"h
] —q"

ase ] w
p(l—q)
l_qi']

=T o=

=1-p(5E)

=1-(1-qg")
=qg"=(1—-p)




8 The Binomial and Geometric Distributiong

Usihg-thg setting of Example 8.13, let’s calculate some probabilrities;

X=1 P(X = 1) = P(success of first roll) = 1/6
X =2: P(X =2) = P(success of second roll)
= P(failure on first roll and success on second roll)

= P(failure on first roll) X P(success on second roll)
= (5/6) X (1/6)

(since trials are independent).

X =3: P(X = 3) = P(failure on first roll) X P(failure on second roll)
X P(success on third roll)
= (5/6) X (5/6) X (1/6)

Continue the process. The pattern suggests that a general formula for the
variable X is ‘

P(X = n) = (5/6)""(1/6)

Now we can state the following principle:

I£ X has a geometric distribution with probability p of success and
(1 — p) of failure on each observation, the possible values of X are
1,2,3, ... If n is any one of these values, then the probability that
the first success occurs on the nth trial is

PX'=n)=(1=p'p

Although the setting for the geometric distribution is very similar to the
binomial setting, there are some striking differences. In rolling a die, for
example, it is possible that you will have to roll the die many times before
you roll a 3. In fact, it is theoretically possible to roll the die forever without
rolling a 3 (although the probability gets closer and closer to 0 the longer
you roll the die without getting a 3). The probability of observing the first
3 on the fiftieth roll of the die is P(X = 50) = .0000.

A probability distribution table for the geometric random variable is
strange indeed because it never ends; that is, the number of table entries
is infinite. The rule for calculating geometric probabilities shown above
can be used to construct the table:
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8.25

8.26

For each of the following, determine if the experiment describes a geo-
metric distribution. If it does, describe the two events of interest (success
and failure), what constitutes a trial, and the probability of success on one
trial. If the random variable is not geometric, identify a condition of the
geometric setting that is not satisfied.

(a)
(b)

Flip a coin until you observe a tail.

Record the number of times a player makes both shots in a one-and-
one foulshooting situation. (In this situation, you get to attempt a
second shot only if you make your first shot.)

Draw a card from a deck, observe the card, and replace the card within

‘the deck. Count the number of times you draw a card in this manner

until you observe a jack.

Buy a “match 6” lottery ticket every day until you win the lottery. (In
a “match 6" lottery, a player chooses 6 different numbers from the set
{1,2,3, ..., 44}. A lottery representative draws 6 different numbers
from this set. To win, the player must match all 6 numbers, in any
order.)

There are 10 red marbles and 5 blue marbles in a jar. You reach in
and, without looking, select a marble. You want to know how many
marbles you will have to draw (without replacement), on average, in
order to be sure that you have 3 red marbles.

An experiment consists of rolling a die until a prime number (2, 3,0 5)is
observed. LetX = number of rolls required to get the first prime number.

(a)
(b)

(c)
(d)
(©)

Verify that X has a geometric distribution.

Construct a probability distribution table to include at least 5 entries
for the probabilities of X. Record probabilities to four decimal places.

Construct a graph of the p.d.f. of X.
Compute the c.d.f. of X and plot its histogram.

Use the formula for the sum of a geometric sequence to show that the
probabilities in the p.d.f. table of X add to 1.

Suppose we have data that suggest that 3% of a co.mpan.y's hard disk drives
are defective. You have been asked to determine the probability that the
first defective hard drive is the fifth unit tested.

(a)

Verify that this is a geometric setting, Identify the random variable;"i
that is, write X = number of and fill in the blank. What~

constitutes a success in this situation? _

{(b) Answer the original question: What is the probability that the first de-

fective hard drive is the fifth unit tested?

(¢) Find the first four entries in the table of the p.d.f. for the random

variable X.



EXploring geomedcric aiswrioutions witn tne i1-85

The TI-83 command geometpdf (under 2nd / DISTR) takes two ar-
guments: the probability p of success and the number of the trial on

. which the first success occurs. Consider the roll of a die of Example 8.13,
The probability of rolling a 3 (success) is 1/6. So it should come as no
surprise that geometpdf (1/6,1) gives the answer 0.1666666667, or
1/6. The next entry in the table is geometpdf (1/6,2), which rehirns
0.1388888889, or 5/36. The second argument can also be a list, such as
geometpdf (.5, {1,2,3,4,5}) or, if you have values of X entered into -
listL;, geometpdf (.5,L;).

Here is an efficient way to quickly construct a p.d.f. table and plot the
result as a histogram. From the Home screen, enter the value of X into
L; with the command seq(x;, X,1,10,1)-L,. (We can't list all of the
terms; we arbitrarily stop at 10.) Next, enter the probabilities into list L;
with the command geometpdf (1/6,L;)-L,. '

L1 [L% JL3 2
L T
+3 .11574
4 .09645
5 .08038
6 .06698
7 .05582
1.2(1)=.1666666666..,

Before you plot the probability histogram, you will want to specify .
e dimensions of an appropriate viewing window. Scanning the list of
values gives you insight into reasonable dimensions for the window. The
following appear to be good choices: X[-1, 11}, and Y{-.05, .2] ;.

WINDOW
Xmin=-1
Xmax=11
Xscl=1
Ymin=-.05
Ymax=.2
Yscl=.1
Xres=1

When you specify a histogram for the STAT / PLOT, specify listL; as
Xlist, and specify list L; for the frequency. The resulting plot shows that
the distribution is strongly right-skewed. o

Plot2 Plot3 P1:L1,L2

. Off

[ R lrype: ".o ﬁ
¢ O 2

Xlist:Ia

Freq:L2 min=1

' max<2 n=.166666

Suppose we are interested in finding the probability that it would take
~ at most 6 rolls of the die to produce a 3. The c.df. can be used to answer
questions like this. Recall that if F(X) is the c.d.f. for the die experiment
and X is a positive integer, then F (Xy) is defined as the sum of the proba-
‘bilities of all positive integers less than or equal to Xy. The TI-83 command
geometcdf (1/6,6) calculates the cumulative probability F(6) for the
first 6 values of X and reports the result as 0.6651020233.
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1

2 3 4 56 7

p (I=pp (=plp (1=pPp (1=p)'p (1=pY¥p (1-p)p

The probabilities (i.c., the entries in the second row) are the terms of a
geometric sequence (hence the name for this random variable). You may
recall from your study of algebra that the general form for a geometric
sequence is

a, ar, arz, arg, ceyar™l oL

where a is the first term, 7 is the ratio of one term in the sequence to the
next, and the nth term is ar"~!. You may also recall that even though
the sequence continues forever, and even though you could never finish .
adding the terms, the sequence does have a sum (one of the implausible
truths of the infinite!). This sum is

a
I—7r

In order for the geometric random variable to have a valid p.d.f,, the prob-
abilities in the second row of the table must add to 1. Using the formula
for the sum of a geometric sequence, we have

[==]

D P)=p+I-pp+{L=pPp+...
i=]
S N
I-(I-p)

The rule for calculating geometric probabilities can be used to construct a
probability distribution table for X = number of rolls of a die until a 3 occurs:

X 1 2 3 4 s 6 7
P(X) | 1667 1389 1157 0965 .0804 .0670 .0558

- ;Here's one way to find these probabilities with the TI-83:

1. Enter the probability of success, 1/6. Press ENTER.
2. Enter #(5/6) and press ENTER. ;
3. Continue to press ENTER repeatedly.

1/6
.1666666667
Ans*(5/6)
.1388888889
.1157407407
.0964506173
.0803755144




If you'd like to see the probabilities as fractions, modify step 2: enter,
#(5/6)p-FRAC and press ENTER. Verify that the entries in the second row

are as shown:

¥. ] 27 3 4
P(X) | U6 5P36 250216 125129

Figure 8.3 is a graph of the distribution of X. As you might expect, the
probability distribution histogram is strongly skewed to the right with a peak
at the leftmost value, 1. It is easy to see why this must be so, since the height
of each bar after the first is the height of the previous bar times the probability
of failure 1 — p. Since you're multiplying the height of each bar by a number
less than 1, each new bar will be shorter than the previous bar, and hence the
histogram will be right-skewed. Always.
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FIGURE 8.3 Probability histogram for the geometric distribution in Example
8.15.



A random variable X is geometric provided that the following condi-
tions are met. '

L. Each observation falls into one of just two categories, which for
convenience we call “success” or “failure.”

2. The probability of a success, call it p, is the same for each
observation.

3. The observations are all independent.

4. The variable of interest is the number of trials required to
obtain the first success.

An experiment consists of rolling a single die. The event of interest is rolling
a 3; this event is called a success. The random variable is defined as X = the
number of trials until a 3 occurs. To verify that this is a geometric setting, note
that rolling a 3 .will represent a success, and rolling any other number will
represent a failure. The probability of rolling a 3 on each roll is the same: 1/6.
The observations are independent. A trial consists of rolling the die once. We
roll the die until a 3 appears. Since all of the requirements are satisfied, thls
experiment describes a geometric setting.

Suppose you repeatedly draw cards without replacement from a deck of 52
cards until you draw an ace. There are two categories of interest: ace = success;
not ace = failure. But is the probability of success the same for each trial? No.
The probability of an ace on the first card is 4/52. If you don’t draw an ace
on the first card, then the probability of an ace on the second card is 4/51.
Since the result of the first draw affects probabilities on the second draw (and
on all successive draws required), the trials are not independent. So this is not
a geometric setting,
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8 The Binomial and Geometric Diétributions

Using the setting of Example 8.13, let’s calculate some probabilities,

1: P(X = 1) = P(success of first roll) = 1/6
=2: P(X = 2) = P(success of second roll)
= P(failure on first roll and success on second roll)
= P(failure on first roll) X P(success on second roll)
= (5/6) X (1/6)

(since trials are independent).

X =3: P(X = 3) = P(failure on first roll) X P(failure on second 1'611)
X P(success on third roll) -
= (5/6) X (5/6) X (1/6)

Continue the process. The pattern suggests that a general formula for the
variable X is

P(X = n) = (5/6)""}(1/6)

Now we can state the following principle:

A
e

If X has a geometric distribution with probability p of success and
(1 — p) of failure on each observation, the possible values of X are
1,2,3, ....Ifnis any one of these values, then the probability that
the first success occurs on the nth trial is

PX =n) = (1—p)*"p
N

Although the setting for the geometric distribution is very similar to the
binomial setting, there are some striking differences. In rolling a die, for
example, it is possible that you will have to roll the die many times before
you roll a 3. In fact, it is theoretically possible to roll the die forever without
rolling a 3 (although the probability gets closer and closer to 0 the longer
you roll the die without getting a 3). The probability of observing the first
3 on the fiftieth roll of the die is P(X = 50) = .0000.

A probability distribution table for the geometric random variable is

strange indeed because it never ends; that is, the number of table entries -

is infinite. The rule for calculating geometric probabilities shown above
can be used to construct the table:



